Development of an Extensional Fault System and Its Control on Syn-Rift Sedimentation: Insights from 3D Seismic Interpretation of the Weixinan Depression, Northern South China Sea

Author:

He Jie12ORCID,Qin Chunyu3,Liao Yuantao12,Jiang Tao12ORCID,Liu Entao12ORCID,Chen Si4ORCID,Wang Hua2

Affiliation:

1. College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China

2. Hubei Key Laboratory of Marine Geological Resources, China University of Geosciences, Wuhan 430074, China

3. Southern Exploration and Development Company, Sinopec, Chengdu 610041, China

4. School of Earth Resources, China University of Geosciences, Wuhan 430074, China

Abstract

The impacts of the growth and linkage of fault segments on sedimentation in a lacustrine rift basin, the Weixinan Depression, the Beibuwan Basin, in the northern South China Sea, which has been demonstrated to have huge petroleum potential, are elucidated on the basis of well-constrained 3D seismic data. Two main fault systems, the No. 1 boundary fault system and the No. 2 fault system, were developed in the Weixinan Depression. The evolution of the lower basement is based on the No. 1 fault system, which controls the distribution of depocenters (ranging from 450–800 m) within the lower structural layer. It includes the five fault segments isolated at the initial stage, the interaction and propagation stage, the linkage stage, and the decline stage. The No. 2 fault system governs the deposition of the upper structural layer with a series of discrete depocenters in the hangingwall. Initially, it comprises several right-order echelon branching faults. Each branch fault rapidly reached the existing length and maintained a constant length while establishing soft links with each other in the subsequent displacement accrual. The development of topographic slopes, transition zones, transverse anticlines, and related fault troughs and gullies related to the activity of the No. 1 boundary fault system is the main controlling factor that induces the differential development of the western, middle, and eastern sections of steep slope fans. The differential subsidence effect along the No. 2 fault system is responsible for the multiple ‘rising-stable’ stage changes in the relative lake level during the development of axial delta deposits. This study will help elucidate the different controls of extensional fault systems on associated sedimentation, as well as rift basin development in the South China Sea and similar areas throughout the world.

Funder

National Natural Science Foundation of China

Major National Science and Technology Programs in the “Thirteenth Five-Year” Plan period

Postdoctoral Innovation Research Position in Hubei Province

Zhanjiang Branch of China National Offshore Oil Corporation

CNOOC South China Sea Oil and Gas Energy Academician Workstation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3