Priority-Based Resource Allocation Optimization for Multi-Service LoRaWAN Harmonization in Compliance with IEEE 2668

Author:

Wei Yang1ORCID,Tsang Kim Fung1,Wang Wenyan1,Zhou Morgana Mo1ORCID

Affiliation:

1. Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China

Abstract

Given the advantage of LoRaWAN private networks, multiple types of services have been implemented by users in one LoRaWAN system to realize various smart applications. With an increasing number of applications, LoRaWAN suffers from multi-service coexistence challenges due to limited channel resources, uncoordinated network configuration, and scalability issues. The most effective solution is establishing a reasonable resource allocation scheme. However, existing approaches are not applicable for LoRaWAN with multiple services with different criticalities. Therefore, we propose a priority-based resource allocation (PB-RA) scheme to coordinate multi-service networks. In this paper, LoRaWAN application services are classified into three main categories, including safety, control, and monitoring. Considering the different criticalities of these services, the proposed PB-RA scheme assigns spreading factors (SFs) to end devices on the basis of the highest priority parameter, which decreases the average packet loss rate (PLR) and improves throughput. Moreover, a harmonization index, namely HDex, based on IEEE 2668 standard is first defined to comprehensively and quantitively evaluate the coordination ability in terms of key quality of service (QoS) performance (i.e., PLR, latency and throughput). Furthermore, Genetic Algorithm (GA)-based optimization is formulated to obtain the optimal service criticality parameters which maximize the average HDex of the network and contribute to a larger capacity of end devices while maintaining the HDex threshold for each service. Simulations and experimental results show that the proposed PB-RA scheme can achieve the HDex score of 3 for each service type at 150 end devices, which improves the capacity by 50% compared to the conventional adaptive data rate (ADR) scheme.

Funder

Electrical and Mechanical Services Department of Hong Kong

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3