Circuit Techniques to Improve Low-Light Characteristics and High-Accuracy Evaluation System for CMOS Image Sensor

Author:

Kato Norihito,Morishita Fukashi,Okubo Satoshi,Ito Masao

Abstract

The surveillance cameras we focus on target the volume zone, and area reduction is a top priority. However, by simplifying the ADC comparator, we face a new RUSH current issue, for which we propose a circuit solution. This paper proposes two novel techniques of column-ADC for surveillance cameras to improve low-light characteristics. RUSH current compensation reduces transient current consumption fluctuations during AD conversion and utilizing timing shift ADCs decreases the number of simultaneously operating ADCs. These proposed techniques improve low-light characteristics because they reduce the operating noise of the circuit. In order to support small signal measurement, this paper also proposes a high-accuracy evaluation system that can measure both small optical/electrical signals in low-light circumstances. To demonstrate these proposals, test chips were fabricated using a 55 nm CIS process and their optical/electrical characteristics were measured. As a result, low-light linearity as optical characteristics were reduced by 63% and column interference (RUSH current) as an electrical characteristic was also reduced by 50%. As for the high-accuracy evaluation system, we confirmed that the inter-sample variation of column interference was 0.05 LSB. This ADC achieved a figure-of-merit (FoM) of 0.32 e-·pJ/step, demonstrating its usefulness for other ADC architectures while using a single-slope-based simple configuration.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3