Climate–Growth Relationships in Laurus azorica—A Dominant Tree in the Azorean Laurel Forest

Author:

Pavão Diogo C.ORCID,Jevšenak JernejORCID,Silva Lurdes Borges,Elias Rui BentoORCID,Silva LuísORCID

Abstract

Forests on oceanic islands, such as the Azores archipelago, enable interesting dendroclimatic research, given their pronounced climatic gradients over short geographical distances, despite the less pronounced seasonality. The Lauraceae play an essential ecological role in Macaronesian natural forests. An example is Laurus azorica (Seub.) Franco, a relevant species given its high frequency and physiognomic dominance in Azorean laurel forests. This study aims to quantify climate–growth relationships in L. azorica using a dendroecological approach. We sampled four stands at São Miguel and two stands at Terceira islands, for a total of 206 trees. Following standard dendrochronological methods and rigorous sample selection procedures, we obtained relatively low rbar values and high temporal autocorrelation. Using a stepwise Random Forest analysis followed by Generalized Linear Models calculation, we found prominent effects of present and previous year temperature, but a low precipitation signal on growth rings, with some model variation between stands. Our results agreed with previous observations for broad-leaved species with diffuse porous wood, contributing to increase the baseline dendroecological knowledge about Azorean forests. Due to the high levels of within- and between-stand variation, and to refine the climatic signal analysis, complementary approaches should be explored in the future.

Funder

Foundation for Science and Technology (FCT) of the Ministry of Science, Technology, and Higher Education

national funds through the FCT

Alexander von Humboldt postdoctoral fellowship and the Slovenian Research Agency

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3