Deeply Buried Authigenic Carbonates in the Qiongdongnan Basin, South China Sea: Implications for Ancient Cold Seep Activities

Author:

Wei JiangongORCID,Wu Tingting,Zhang Wei,Deng YinanORCID,Xie RuiORCID,Feng Junxi,Liang Jinqiang,Lai Peixin,Zhou Jianhou,Cao Jun

Abstract

Cold seep carbonates are important archives of pore water chemistry and ancient methane seepage activity. They also provide an important contribution to the global carbon sink. Seep carbonates at three sediment layers (3.0, 52.1, and 53.6 mbsf) were collected at site W08B in the Qiongdongnan Basin of the South China Sea. This study investigated the mineralogy, microstructure, stable carbon and oxygen isotopes, trace elements, and U-Th dates of these carbonates to identify the relationship between methane flux and authigenic carbonate precipitation. The results showed that the δ13C and δ18O values of all carbonates are similar, indicating that the carbon source for shallow carbonates and deep carbonates has remained constant over time and included biogenic and thermogenic methane. Although carbonates were found in three sediment layers, the two main stages of methane seepage events were discernible, which was likely caused by the dissociation of gas hydrates. The first methane seep took place at 131.1–136.3 ka BP. During a dramatic drop in the sea level, the seep carbonate at 52.1 mbsf formed at 136.3 ka BP through the anaerobic oxidation of methane (AOM). The carbonate at 53.6 mbsf resulted from the vertical downward movement of the sulfate-methane transition zone with decreasing methane flux at 131.1 ka BP. This is the reason for the age of carbonates at 52.1 mbsf being older than the age of carbonates at 53.6 mbsf. The second methane seep took place at 12.2 ka BP. Shallow carbonate formed at that time via AOM and is now located at 3 mbsf. Moreover, thin-section photomicrographs of deep carbonate mainly consisted of matrix micrite and biological debris and acicular aragonite occurred as vein cement filling the pore spaces between the matrix micrite. The acicular aragonite was mainly influenced by the timing of the carbonate precipitation of minerals. This research identified a long history of methane seep activity reflected by the vertical distribution of carbonates.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3