The Emerging and Diverse Roles of Bis(monoacylglycero) Phosphate Lipids in Cellular Physiology and Disease

Author:

Showalter Megan R.,Berg Anastasia L.,Nagourney Alexander,Heil Hailey,Carraway Kermit L.,Fiehn OliverORCID

Abstract

Although understudied relative to many phospholipids, accumulating evidence suggests that bis(monoacylglycero)phosphate (BMP) is an important class of regulatory lipid that plays key roles in lysosomal integrity and function. BMPs are rare in most mammalian tissues, comprising only a few percent of total cellular lipid content, but are elevated in cell types such as macrophages that rely heavily on lysosomal function. BMPs are markedly enriched in endosomal and lysosomal vesicles compared to other organelles and membranous structures, and their unique sn-1:sn-1′ stereoconfiguration may confer stability within the hydrolytic lysosomal environment. BMP-enriched vesicles serve in endosomal-lysosomal trafficking and function as docking structures for the activation of lysosomal hydrolytic enzymes, notably those involved in the catabolic breakdown of sphingolipids. BMP levels are dysregulated in lysosomal storage disorders, phospholipidosis, metabolic diseases, liver and kidney diseases and neurodegenerative disorders. However, whether BMP alteration is a mediator or simply a marker of pathological states is unclear. Likewise, although BMP acyl chain composition may be altered with disease states, the functional significance of specific BMP species remains to be resolved. Newly developed tools for untargeted lipidomic analysis, together with a deeper understanding of enzymes mediating BMP synthesis and degradation, will help shed further light on the functional significance of BMPs in cellular physiology and pathology.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3