Structural Design Simulation of Bayonet Heat Exchanger for Sulfuric Acid Decomposition

Author:

Gao Qunxiang,Zhang Ping,Peng Wei,Chen Songzhe,Zhao Gang

Abstract

The heat generated in a high-temperature gas-cooled reactor can be used to drive the iodine-sulfur cycle to produce hydrogen. However, the sulfuric acid decomposition step requires a sophisticated sulfuric acid decomposer to increase the decomposition rate. The decomposition of sulfuric acid mainly occurs in the catalytic zone, and the optimization of its structure is very important for increasing the decomposition rate. This study focuses on the structural design of the catalytic zone of the sulfuric acid decomposer unit. The structure with double inner tubes is designed to analyze the influence of the inner tube heat transfer area and the catalytic volume of the annulus region on the decomposition rate. The species transport model is used to predict the proportion of products followed by analysis of the key factors affecting the decomposition rate of the catalytic domain. The results reveal that the new design attains the decomposition temperature requirements and increases the fluid velocity of the inner tube. This in turn promotes the heat transfer effect. The decomposition rate is negatively correlated with the flow rate. Nonetheless, a structure with double inner tubes which have the same total area of inner tube as a structure with a single inner tube has a better optimization effect than a structure which has the same annulus catalytic volume as a structure with single inner tube. It increases the decomposition rate by up to 6.1% while a structure which has the same annulus catalytic volume as a structure with a single inner tube does the same by up to 1.7%. The decomposition rate can be maintained at a relatively high level when the inlet velocity of the current structural design is about 0.2 m/s. This study provides a reference for the engineering design of sulfuric acid decomposer based on the heat exchange area and catalytic volume.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3