Mental Fatigue Degree Recognition Based on Relative Band Power and Fuzzy Entropy of EEG

Author:

Xu Xin,Tang Jie,Xu Tingting,Lin Maokun

Abstract

Mental fatigue is a common phenomenon in our daily lives. Long-term fatigue can lead to a decline in a person’s operational functions and seriously affect work efficiency. In this paper, a method that recognizes the degree of mental fatigue based on relative band power and fuzzy entropy of Electroencephalogram (EEG) is proposed. The N-back experiment was used to induce mental fatigue in subjects, and the corresponding EEG signals were recorded during the experiment. A preprocessing method based on complementary ensemble empirical modal decomposition (CEEMD) and independent component analysis (ICA) was designed to remove noise from the raw EEG signal. The relative band power feature, which has been used extensively in fatigue recognition studies, was extracted from the EEG signals. Meanwhile, fuzzy entropy, a feature commonly used in attention recognition, was also extracted for fatigue recognition, based on previous findings that an increase in fatigue is accompanied by a decrease in attention. The two features were fed into an extreme gradient boosting (XGBoost) classifier to distinguish three different degrees of fatigue, which resulted in an average accuracy of 92.39% based on data from eight subjects. The promising results indicate the effectiveness of the proposed method in mental fatigue degree identification.

Funder

National Science Foundations of China

Excellent Youth Foundation of Jiangsu Scientific Committee

National Basic Research Program of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Complete Scheme for Multi-Character Classification Using EEG Signals From Speech Imagery;IEEE Transactions on Biomedical Engineering;2024-08

2. Exploring Mental Fatigue and Burnout in the Workplace: A Survival Analysis Approach;EAI Endorsed Transactions on Pervasive Health and Technology;2024-04-10

3. A transcutaneous acupoint electrical simulation glove for relieving the mental fatigue of crane drivers in real building environment;Computer Methods in Biomechanics and Biomedical Engineering;2024-01-04

4. The Survival Analysis of Mental Fatigue Utilizing the Estimator of Kaplan-Meier and Nelson-Aalen;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3