Architectural Allostatic Overloading: Exploring a Connection between Architectural Form and Allostatic Overloading

Author:

Valentine Cleo1ORCID

Affiliation:

1. Department of Architecture, University of Cambridge, Cambridge CB2 1PX, UK

Abstract

This paper examines, conceptually, the relationship between stress-inducing architectural features and allostatic overload by drawing on literature from neuroimmunology and neuroarchitecture. The studies reviewed from the field of neuroimmunology indicate that chronic or repeated exposure to stress-inducing events may overwhelm the body’s regulatory system, resulting in a process termed allostatic overload. While there is evidence from the field of neuroarchitecture that short-term exposure to particular architectural features produce acute stress responses, there is yet to be a study on the relationship between stress-inducing architectural features and allostatic load. This paper considers how to design such a study by reviewing the two primary methods used to measure allostatic overload: biomarkers and clinimetrics. Of particular interest is the observation that the clinical biomarkers used to measure stress in neuroarchitectural studies differ substantially from those used to measure allostatic load. Therefore, the paper concludes that while the observed stress responses to particular architectural forms may indicate allostatic activity, further research is needed to determine whether these stress responses are leading to allostatic overload. Consequently, a discrete longitudinal public health study is advised, one which engages the clinical biomarkers indicative of allostatic activity and incorporates contextual data using a clinimetric approach.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3