Investigation of the Solubility of Elemental Sulfur (S) in Sulfur-Containing Natural Gas with Machine Learning Methods

Author:

Wang Yuchen1ORCID,Luo Zhengshan1,Luo Jihao2,Gao Yiqiong1,Kong Yulei1,Wang Qingqing1

Affiliation:

1. School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. School of Computer Science, Beijing Institute of Technology, Beijing 100081, China

Abstract

Some natural gases are toxic because they contain hydrogen sulfide (H2S). The solubility pattern of elemental sulfur (S) in toxic natural gas needs to be studied for environmental protection and life safety. Some methods (e.g., experiments) may pose safety risks. Measuring sulfur solubility using a machine learning (ML) method is fast and accurate. Considering the limited experimental data on sulfur solubility, this study used consensus nested cross-validation (cnCV) to obtain more information. The global search capability and learning efficiency of random forest (RF) and weighted least squares support vector machine (WLSSVM) models were enhanced via a whale optimization–genetic algorithm (WOA-GA). Hence, the WOA-GA-RF and WOA-GA-WLSSVM models were developed to accurately predict the solubility of sulfur and reveal its variation pattern. WOA-GA-RF outperformed six other similar models (e.g., RF model) and six other published studies (e.g., the model designed by Roberts et al.). Using the generic positional oligomer importance matrix (gPOIM), this study visualized the contribution of variables affecting sulfur solubility. The results show that temperature, pressure, and H2S content all have positive effects on sulfur solubility. Sulfur solubility significantly increases when the H2S content exceeds 10%, and other conditions (temperature, pressure) remain the same.

Funder

National Natural Science Foundation of China

Social Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3