A Model for Predicting and Grading the Quality of Grain Storage Processes Affected by Microorganisms under Different Environments

Author:

Zhang Qingchuan1,Li Zihan1,Dong Wei1ORCID,Wei Siwei1,Liu Yingjie1,Zuo Min1

Affiliation:

1. National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China

Abstract

Changes in storage environments have a significant impact on grain quality. Accurate prediction of any quality changes during grain storage in different environments is very important for human health. In this paper, we selected wheat and corn, which are among the three major staple grains, as the target grains whose storage monitoring data cover more than 20 regions, and constructed a grain storage process quality change prediction model, which includes a FEDformer-based grain storage process quality change prediction model and a K-means++-based grain storage process quality change grading evaluation model. We select six factors affecting grain quality as input to achieve effective prediction of grain quality. Then, evaluation indexes were defined in this study, and a grading evaluation model of grain storage process quality was constructed using clustering model with the index prediction results and current values. The experimental results showed that the grain storage process quality change prediction model had the highest prediction accuracy and the lowest prediction error compared with other models.

Funder

National Key Technology R&D Program of China

Beijing Natural Science Foundation

Natural Science Foundation of China

Humanity and Social Science Youth Foundation of Ministry of Education of China

Social Science Research Common Program of Beijing Municipal Commission of Education

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3