Affiliation:
1. National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
Abstract
Changes in storage environments have a significant impact on grain quality. Accurate prediction of any quality changes during grain storage in different environments is very important for human health. In this paper, we selected wheat and corn, which are among the three major staple grains, as the target grains whose storage monitoring data cover more than 20 regions, and constructed a grain storage process quality change prediction model, which includes a FEDformer-based grain storage process quality change prediction model and a K-means++-based grain storage process quality change grading evaluation model. We select six factors affecting grain quality as input to achieve effective prediction of grain quality. Then, evaluation indexes were defined in this study, and a grading evaluation model of grain storage process quality was constructed using clustering model with the index prediction results and current values. The experimental results showed that the grain storage process quality change prediction model had the highest prediction accuracy and the lowest prediction error compared with other models.
Funder
National Key Technology R&D Program of China
Beijing Natural Science Foundation
Natural Science Foundation of China
Humanity and Social Science Youth Foundation of Ministry of Education of China
Social Science Research Common Program of Beijing Municipal Commission of Education
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献