Differences in Carbon and Nitrogen Migration and Transformation Driven by Cyanobacteria and Macrophyte Activities in Taihu Lake

Author:

Han Chaonan,Wu Hao,Sun Ningning,Tang Yu,Dai Yan,Dai Tianhao

Abstract

The metabolic activities of primary producers play an important role in the migration and transformation of carbon (C) and nitrogen (N) in aquatic environments. This study selected two typical areas in Taihu Lake, a cyanobacteria-dominant area (Meiliang Bay) and a macrophyte-dominant area (in the east area of the lake), to study the effects of cyanobacteria and macrophyte activities on C and N migration and transformation in aquatic environments. The results showed that total N and total particulate N concentrations in the water of the cyanobacteria-dominant area were much higher than those in the macrophyte-dominant area, which was mainly due to the assimilated intracellular N in cyanobacteria. Macrophyte activity drove a significantly higher release of dissolved organic C (DOC) in the water than that driven by cyanobacteria activity, and the DOC contents in the water of the macrophyte-dominant area were 2.4~4.6 times the DOC contents in the cyanobacteria-dominant area. In terms of the sediments, organic matter (OM), sediment total N and N species had positive correlations and their contents were higher in the macrophyte-dominant area than in the cyanobacteria-dominant area. Sediment OM contents in the macrophyte-dominant area increased from 4.19% to 9.33% as the sediment deepened (0~10 cm), while the opposite trend was presented in the sediments of the cyanobacteria-dominant area. Sediment OM in the macrophyte-dominant area may contain a relatively high proportion of recalcitrant OC species, while sediment OM in the cyanobacteria-dominant area may contain a relatively high proportion of labile OC species. Compared with the macrophyte-dominant area, there was a relatively high richness and diversity observed in the bacterial community in the sediments in the cyanobacteria-dominant area, which may be related to the high proportion of labile OC in the OM composition in its sediments. The relative abundances of most OC-decomposing bacteria, denitrifying bacteria, Nitrosomonas and Nitrospira were higher in the sediments of the cyanobacteria-dominant area than in the macrophyte-dominant area. These bacteria in the sediments of the cyanobacteria-dominant area potentially accelerated the migration and transformation of C and N, which may supply nutrients to overlying water for the demands of cyanobacteria growth. This study enhances the understanding of the migration and transformation of C and N and the potential effects of bacterial community structures under the different primary producer habitats.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu province in China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference50 articles.

1. Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective;Wu;Sci. Total Environ.,2019

2. Control of nitrogen export from watersheds by headwater streams;Peterson;Science,2001

3. Review of Inorganic Nitrogen Transformations and Effect of Global Climate Change on Inorganic Nitrogen Cycling in Ocean Ecosystems;Kim;Ocean Sci. J.,2016

4. Nitrogen, Phosphorus, and Eutrophication in the Coastal Marine Environment;Ryther;Science,1971

5. Jiang, H.Y. (2017). Study on Nitrogen and Carbon Cycles in Lakes in the Middle and Late Period of Algal Bloom Outbreak. [Master’s Thesis, Yangzhou University].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3