Affiliation:
1. School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China
Abstract
Land degradation in black soil regions has a significant effect on belowground systems, and Collembolans can adequately indicate environmental changes in the soil. However, there is currently a knowledge gap in the literature regarding the responses of soil Collembolans to land degradation. In order to better understand this issue, in this study, a total of 180 soil Collembolan samples were collected from four habitats with varying degrees of land degradation in the Songnen Plain, namely a no land-degradation habitat (NLD), light land-degradation habitat (LLD), moderate land-degradation habitat (MLD) and severe land-degradation habitat (SLD). The results reveal that the different degrees of land degradation caused some differences in the taxonomic composition of the Collembolans; however, the majority of the Collembolan species are distributed relatively evenly. Proisotoma minima are always a dominant species during the study period. Seasonal variations are observed in the abundance, richness and diversity levels. In the severe land-degradation habitats (SLD), the abundance, richness, diversity and community complexity of the Collembolans are aways at the lowest levels. In addition, Proisotoma minima is negatively correlated with a majority of the species of Collembolans in the low levels of the land-degradation habitats, whereas they are positively correlated with most of the other species in the high levels. Epedaphic and euedaphic Collembolans responded to land degradation more obviously. The structural equation model (SEM) displays that soil Collembolan communities respond negatively to land degradation. Overall, our results provide implications that soil Collembolan communities are affected by land degradation, and that different taxa of soil Collembolans respond to degradation in numerous ways.
Funder
National Key R&D Program of China
Youth Talent Project of the Northeast Agricultural University of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference52 articles.
1. IPCC (2019). IPCC Special Report: Climate Change and Land, IPCC.
2. UNCCD (2017). Global Land Outlook, UNCCD.
3. IPBES (2018). Land Degradation and Restoration Assessment, IPBES.
4. Global land change from 1982 to 2016;Song;Nature,2018
5. Methodologies for soil erosion and land degradation assessment in mediterranean-type ecosystems;Ries;Land Degrad. Dev.,2010
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献