Greenhouse Gas Emissions from Soils Amended with Cornstalk Biochar at Different Addition Ratios

Author:

Zhou Yongchun,Li Danyang,Li Zhenglong,Guo Sibo,Chen Zhimin,Wu Liulin,Zhao Yan

Abstract

Biochar addition has been recommended as a potential strategy for mitigating climate change. However, the number of studies simultaneously investigating the effects of biochar addition on CO2, N2O and CH4 emissions and sequentially global warming potential (GWP) is limited, especially concerning its effect on native soil organic carbon (SOC) mineralization. An incubation experiment was conducted to investigate soil physicochemical properties, CO2, N2O and CH4 emissions and GWP in the treatments with 0% (CK), 1% (BC1) and 4% (BC4) cornstalk biochar additions, and clarify the priming effect of biochar on native SOC mineralization by the 13C tracer technique. Generally, biochar addition increased soil pH, cation exchange capacity, SOC and total nitrogen, but decreased NH4+-N and NO3−-N. Compared with CK, BC1 and BC4 significantly reduced CO2 emissions by 20.7% and 28.0%, and reduced N2O emissions by 25.6% and 95.4%, respectively. However, BC1 significantly reduced CH4 emission by 43.6%, and BC4 increased CH4 emission by 19.3%. BC1 and BC4 significantly reduced the GWP by 20.8% and 29.3%, but there was no significant difference between them. Biochar addition had a negative priming effect on native SOC mineralization, which was the reason for the CO2 emission reduction. The negative priming effect of biochar was attributed to the physical protection of native SOC by promoting microaggregate formation and preferentially using soluble organic carbon in biochar. The N2O emission decrease was rooted in the reduction of nitrification and denitrification substrates by promoting the microbial assimilation of inorganic nitrogen. The inconsistency of CH4 emissions was attributed to the different relative contributions of CH4 production and oxidation under different biochar addition ratios. Our study suggests that 1% should be a more reasonable biochar addition ratio for mitigating greenhouse gas emissions in sandy loam, and emphasizes that it is necessary to furtherly investigate nitrogen primary transformation rates and the relative contributions of CH4 production and oxidation by the 15N and 13C technique, which is helpful for comprehensively understanding the effect mechanisms of biochar addition on greenhouse gas emissions.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference57 articles.

1. IPCC (2018). Special Report on Global Warming of 1.5 °C, Cambridge University Press.

2. IPCC (2022, November 01). The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/report/ar6/wg1/#FullReport.

3. Impact of greenhouse gases and climate change;Ibrahim;Nature,2016

4. IPCC (2014). Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

5. Soil carbon sequestration and biochar as negative emission technologies;Smith;Glob. Chang. Biol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3