Insights into Activation Mechanisms of Store-Operated TRPC1 Channels in Vascular Smooth Muscle

Author:

Martín-Aragón Baudel Miguel A. S.ORCID,Shi Jian,Large William A.,Albert Anthony P.ORCID

Abstract

In vascular smooth muscle cells (VMSCs), the stimulation of store-operated channels (SOCs) mediate Ca2+ influx pathways which regulate important cellular functions including contraction, proliferation, migration, and growth that are associated with the development of vascular diseases. It is therefore important that we understand the biophysical, molecular composition, activation pathways, and physiological significance of SOCs in VSMCs as these maybe future therapeutic targets for conditions such as hypertension and atherosclerosis. Archetypal SOCs called calcium release-activated channels (CRACs) are composed of Orai1 proteins and are stimulated by the endo/sarcoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) following store depletion. In contrast, this review focuses on proposals that canonical transient receptor potential (TRPC) channels composed of a heteromeric TRPC1/C5 molecular template, with TRPC1 conferring activation by store depletion, mediate SOCs in native contractile VSMCs. In particular, it summarizes our recent findings which describe a novel activation pathway of these TRPC1-based SOCs, in which protein kinase C (PKC)-dependent TRPC1 phosphorylation and phosphatidylinositol 4,5-bisphosphate (PIP2) are obligatory for channel opening. This PKC- and PIP2-mediated gating mechanism is regulated by the PIP2-binding protein myristoylated alanine-rich C kinase (MARCKS) and is coupled to store depletion by TRPC1-STIM1 interactions which induce Gq/PLCβ1 activity. Interestingly, the biophysical properties and activation mechanisms of TRPC1-based SOCs in native contractile VSMCs are unlikely to involve Orai1.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3