Author:
Cui Jiadong,Xing Wenhao,Qin Huibin,Hua Yongzhu,Zhang Xin,Liu Xinran
Abstract
A sensorless control system of a permanent magnet synchronous motor based on an extended Kalman filter (EKF) algorithm faces problems with inaccurate or mismatched process noise statistics. This problem affects the performance of the filter, resulting in an inaccurate estimation of motor speed. To address the above problem, this paper proposes a parameter-adaptive Kalman filter algorithm that does not depend on precise noise system covariance. This method can significantly reduce the negative impact of the noise statistical mismatch on motor speed estimation. In addition, the method uses adaptive covariance prediction and removes the original covariance checks in the EKF, thus reducing the calculation burden. The simulation results show that, compared with the traditional EKF algorithm, the algorithm proposed in this article can effectively reduce the steady-state jitter and improve the filtering adaptability and calculation accuracy.
Funder
National Key R&D Program of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献