Research on Permanent Magnet Synchronous Motor Control System Based on Adaptive Kalman Filter

Author:

Cui Jiadong,Xing Wenhao,Qin Huibin,Hua Yongzhu,Zhang Xin,Liu Xinran

Abstract

A sensorless control system of a permanent magnet synchronous motor based on an extended Kalman filter (EKF) algorithm faces problems with inaccurate or mismatched process noise statistics. This problem affects the performance of the filter, resulting in an inaccurate estimation of motor speed. To address the above problem, this paper proposes a parameter-adaptive Kalman filter algorithm that does not depend on precise noise system covariance. This method can significantly reduce the negative impact of the noise statistical mismatch on motor speed estimation. In addition, the method uses adaptive covariance prediction and removes the original covariance checks in the EKF, thus reducing the calculation burden. The simulation results show that, compared with the traditional EKF algorithm, the algorithm proposed in this article can effectively reduce the steady-state jitter and improve the filtering adaptability and calculation accuracy.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A sensorless control system of permanent magnet synchronous motor based on observation error threshold EKF;Transactions of the Institute of Measurement and Control;2024-09-11

2. A novel fast and chattering-free speed control method for PMSM motor drive based on sliding mode control;International Journal of Dynamics and Control;2024-04-17

3. Adaptive Robust Sensorless Control for PMSM Based on Improved Back EMF Observer and Extended State Observer;IEEE Transactions on Industrial Electronics;2024

4. An Adaptive MTPA Control Method based on improved EKO for PMa-SynRM Drive System;2023 6th International Conference on Power and Energy Applications (ICPEA);2023-11-24

5. Total Least Squares Based Identification for Permanent Magnet Synchronous Machine;2023 5th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA);2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3