Overflow Capacity Prediction of Pumping Station Based on Data Drive

Author:

Guo Tiantian1,Yan Jianzhuo1,Chen Jianhui1,Yu Yongchuan1

Affiliation:

1. Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing 100124, China

Abstract

In recent years, the information requirements of pumping stations have become higher and higher. The prediction of overflow capacity can provide important reference for flood carrying capacity, water resource scheduling and water safety. In order to improve the accuracy, stability and generalization ability of the model, a BiGRU–ARIMA data-driven method based on self-attention mechanism is proposed to predict the flow capacity of the pump station. Bidirectional gated recurrent unit (BiGRU), a variant of cyclic neural network (RNN), can not only deal with nonlinear components well, but also deal with the problem of insufficient dependence over long distances and has a simple structure. Autoregressive integrated moving average (ARIMA) has the advantage of being sensitive to linear components. Firstly, the characteristics of the pre-processed pump station data are selected and screened through Pearson correlation coefficient and a self-attention mechanism. Then, a bi-directional gated recurrent unit (BiGRU) is used to process the nonlinear components of the data, and a dropout layer is added to avoid overfitting phenomena. We extract the linear features of the obtained error terms using the ARIMA model and use them as correction items to correct the prediction results of the BiGRU model. Finally, we obtain the prediction results of the overflow and water level. The variation characteristics of overdischarge are analyzed by the relation of flow and water level. In this paper, the actual production data of a Grade 9 pumping station of Miyun Reservoir is taken as an example to verify the validity of the model. Model performance is evaluated according to mean absolute error (MAE), mean absolute percentage error (MAPE) and linear regression correlation coefficient (R2). The experimental results show that, compared with the single ARIMAX, BiGRU model and BP neural network, the SA–BiGRU–ARIMA hybrid prediction model has a better prediction effect than other data-driven models.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3