Optical Imaging Deformation Inspection and Quality Level Determination of Multifocal Glasses

Author:

Lin Hong-Dar1,Lee Tung-Hsin1,Lin Chou-Hsien2,Wu Hsin-Chieh1ORCID

Affiliation:

1. Department of Industrial Engineering and Management, Chaoyang University of Technology, Taichung 413310, Taiwan

2. Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712-0273, USA

Abstract

Multifocal glasses are a new type of lens that can fit both nearsighted and farsighted vision on the same lens. This property allows the glass to have various curvatures in distinct regions within the glass during the grinding process. However, when the curvature varies irregularly, the glass is prone to optical deformation during imaging. Most of the previous studies on imaging deformation focus on the deformation correction of optical lenses. Consequently, this research uses an automatic deformation defect detection system for multifocal glasses to replace professional assessors. To quantify the grade of deformation of curved multifocal glasses, we first digitally imaged a pattern of concentric circles through a test glass to generate an imaged image of the glass. Second, we preprocess the image to enhance the clarity of the concentric circles’ appearance. A centroid-radius model is used to represent the form variation properties of every circle in the processed image. Third, the deviation of the centroid radius for detecting deformation defects is found by a slight deviation control scheme, and we gain a difference image indicating the detected deformed regions after comparing it with the norm pattern. Fourth, based on the deformation measure and occurrence location of multifocal glasses, we build fuzzy membership functions and inference regulations to quantify the deformation’s severity. Finally, a mixed model incorporating a network-based fuzzy inference and a genetic algorithm is applied to determine a quality grade for the deformation severity of detected defects. Testing outcomes show that the proposed methods attain a 94% accuracy rate of the quality levels for deformation severity, an 81% recall rate of deformation defects, and an 11% false positive rate for multifocal glass detection. This research contributes solutions to the problems of imaging deformation inspection and provides computer-aided systems for determining quality levels that meet the demands of inspection and quality control.

Funder

National Science and Technology Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3