Automatic Detection of Electrodermal Activity Events during Sleep

Author:

Piccini Jacopo12ORCID,August Elias12ORCID,Noel Aziz Hanna Sami Leon12ORCID,Siilak Tiina1,Arnardóttir Erna Sif1234ORCID

Affiliation:

1. Reykjavik University Sleep Institute, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland

2. Department of Engineering, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland

3. Department of Computer Science, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland

4. Landspitali University Hospital, Hringbraut 101, 101 Reykjavik, Iceland

Abstract

Currently, there is significant interest in developing algorithms for processing electrodermal activity (EDA) signals recorded during sleep. The interest is driven by the growing popularity and increased accuracy of wearable devices capable of recording EDA signals. If properly processed and analysed, they can be used for various purposes, such as identifying sleep stages and sleep-disordered breathing, while being minimally intrusive. Due to the tedious nature of manually scoring EDA sleep signals, the development of an algorithm to automate scoring is necessary. In this paper, we present a novel scoring algorithm for the detection of EDA events and EDA storms using signal processing techniques. We apply the algorithm to EDA recordings from two different and unrelated studies that have also been manually scored and evaluate its performances in terms of precision, recall, and F1 score. We obtain F1 scores of about 69% for EDA events and of about 56% for EDA storms. In comparison to the literature values for scoring agreement between experts, we observe a strong agreement between automatic and manual scoring of EDA events and a moderate agreement between automatic and manual scoring of EDA storms. EDA events and EDA storms detected with the algorithm can be further processed and used as training variables in machine learning algorithms to classify sleep health.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3