Author:
Kong Deting,Wang Yuan,Wu Xinyan,Liu Xiyu,Qu Jianhua,Xue Jie
Abstract
In this paper, we propose a novel clustering approach based on P systems and grid- density strategy. We present grid-density based approach for clustering high dimensional data, which first projects the data patterns on a two-dimensional space to overcome the curse of dimensionality problem. Then, through meshing the plane with grid lines and deleting sparse grids, clusters are found out. In particular, we present weighted spiking neural P systems with anti-spikes and astrocyte (WSNPA2 in short) to implement grid-density based approach in parallel. Each neuron in weighted SN P system contains a spike, which can be expressed by a computable real number. Spikes and anti-spikes are inspired by neurons communicating through excitatory and inhibitory impulses. Astrocytes have excitatory and inhibitory influence on synapses. Experimental results on multiple real-world datasets demonstrate the effectiveness and efficiency of our approach.
Funder
Natural Science Foundation of Shandong Province
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献