Harnessing Code Interpreters for Enhanced Predictive Modeling: A Case Study on High-Density Lipoprotein Level Estimation in Romanian Diabetic Patients

Author:

Albajy Maitham Abdallah12ORCID,Mernea Maria1,Mihaila Alexandra3,Pop Cristian-Emilian14ORCID,Mihăilescu Dan Florin15

Affiliation:

1. Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania

2. National Center for Occupational Health and Safety, 22 Imam Ali Str., Nasiriyah 64001, Iraq

3. Liberty Medical Center Clinic, Intrarea Zorilor 23 A Str., 077175 Bucharest, Romania

4. Non-Governmental Research Organization Biologic, Schitului 14 Str., 032044 Bucharest, Romania

5. Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Psychiatric Hospital, Șoseaua Berceni 10 Str., 041914 Bucharest, Romania

Abstract

Diabetes is a condition accompanied by the alteration of body parameters, including those related to lipids like triglyceride (TG), low-density lipoproteins (LDLs), and high-density lipoproteins (HDLs). The latter are grouped under the term dyslipidemia and are considered a risk factor for cardiovascular events. In the present work, we analyzed the complex relationships between twelve parameters (disease status, age, sex, body mass index, systolic blood pressure, diastolic blood pressure, TG, HDL, LDL, glucose, HbA1c levels, and disease onset) of patients with diabetes from Romania. An initial prospective analysis showed that HDL is inversely correlated with most of the parameters; therefore, we further analyzed the dependence of HDLs on the other factors. The analysis was conducted with the Code Interpreter plugin of ChatGPT, which was used to build several models from which Random Forest performed best. The principal predictors of HDLs were TG, LDL, and HbA1c levels. Random Forest models were used to model all parameters, showing that blood pressure and HbA1c can be predicted based on the other parameters with the least error, while the less predictable parameters were TG and LDL levels. By conducting the present study using the ChatGPT Code Interpreter, we show that elaborate analysis methods are at hand and easy to apply by researchers with limited computational resources. The insight that can be gained from such an approach, such as what we obtained on HDL level predictors in diabetes, could be relevant for deriving novel management strategies and therapeutic approaches.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3