Study of Asymptotic Velocity in the Bondi–Hoyle Accretion Flows in the Domain of Kerr and 4-D Einstein–Gauss–Bonnet Gravities

Author:

Donmez OrhanORCID,Dogan FatihORCID,Sahin TubaORCID

Abstract

Understanding the physical structures of the accreted matter very close to a black hole in quasars and active galactic nucleus (AGN) is an important milestone to constrain the activities occurring in their centers. In this paper, we numerically investigate the effects of the asymptotic velocities on the physical structures of the accretion disk around the Kerr and Einstein–Gauss–Bonnet (EGB) rapidly rotating black holes. The Bondi–Hoyle accretion is considered with a falling gas towards the black hole in an upstream region of the computational domain. Shock cones are naturally formed in the downstream part of the flow around both black holes. The structure of the cones and the amount of the accreted matter depend on asymptotic velocity V∞ (Mach number) and the types of the gravities (Kerr or EGB). Increasing the Mach number of the in-flowing matter in the supersonic region reduces the shock opening angle and the accretion rates, because of the gas rapidly falling towards the black hole. The EGB gravity leads to an increase in the shock opening angle of the shock cones while the mass-accretion rates dM/dt decrease in EGB gravity with a Gauss–Bonnet (GB) coupling constant α. It is also confirmed that accretion rates and drag forces are significantly altered in the EGB gravity. Our numerical simulation results could be used in identifying the accretion mechanism and physical properties of the accretion disk and black hole in the observed X-rays such as NGC 1313 X-1 and 1313 X-2 and MAXI J1803-298.

Funder

American University of the Middle East

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3