Combinatorial Quantum Gravity and Emergent 3D Quantum Behaviour

Author:

Trugenberger Carlo A.1

Affiliation:

1. SwissScientific Technologies SA, Rue du Rhone 59, CH-1204 Geneva, Switzerland

Abstract

We review combinatorial quantum gravity, an approach that combines Einstein’s idea of dynamical geometry with Wheeler’s “it from bit” hypothesis in a model of dynamical graphs governed by the coarse Ollivier–Ricci curvature. This drives a continuous phase transition from a random to a geometric phase due to a condensation of loops on the graph. In the 2D case, the geometric phase describes negative-curvature surfaces with two inversely related scales: an ultraviolet (UV) Planck length and an infrared (IR) radius of curvature. Below the Planck scale, the random bit character survives; chunks of random bits of the Planck size describe matter particles of excitation energy given by their excess curvature. Between the Planck length and the curvature radius, the surface is smooth, with spectral and Hausdorff dimension 2. At scales larger than the curvature radius, particles see the surface as an effective Lorentzian de Sitter surface, the spectral dimension becomes 3, and the effective slow dynamics of particles, as seen by co-moving observers, emerges as quantum mechanics in Euclidean 3D space. Since the 3D distances are inherited from the underlying 2D de Sitter surface, we obtain curved trajectories around massive particles also in 3D, representing the large-scale gravity interactions. We thus propose that this 2D model describes a generic holographic screen relevant for real quantum gravity.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference65 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the space of graphs with fixed discrete curvatures;Journal of Physics: Complexity;2024-08-27

2. Complex quantum networks: a topical review;Journal of Physics A: Mathematical and Theoretical;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3