Entropic Inflation in Presence of Scalar Field

Author:

Odintsov Sergei D.12ORCID,D’Onofrio Simone2ORCID,Paul Tanmoy34ORCID

Affiliation:

1. ICREA, Passeig Luis Companys, 23, 08010 Barcelona, Spain

2. Institute of Space Sciences (ICE, CSIC), C. Can Magrans s/n, 08193 Barcelona, Spain

3. Department of Physics, Visva-Bharati University, Santiniketan 731235, India

4. Labaratory for Theoretical Cosmology, International Centre of Gravity and Cosmos, Tomsk State University of Control Systems and Radioelectronics (TUSUR), 634050 Tomsk, Russia

Abstract

In spirit of the recently proposed four-parameter generalized entropy of apparent horizon, we investigate inflationary cosmology where the matter field inside of the horizon is dominated by a scalar field with a power law potential (i.e., the form of ϕn where ϕ is the scalar field under consideration). Actually without any matter inside of the horizon, the entropic cosmology leads to a de-Sitter spacetime, or equivalently, an eternal inflation with no exit. Thus in order to achieve a viable inflation, we consider a minimally coupled scalar field inside the horizon, and moreover, with the simplest quadratic potential. It is well known that the ϕ2 potential in standard scalar field cosmology is ruled out from inflationary perspective as it is not consistent with the recent Planck 2018 data; (here it may be mentioned that in the realm of “apparent horizon thermodynamics”, the standard scalar field cosmology is analogous to the case where the entropy of the apparent horizon is given by the Bekenstein–Hawking entropy). However, the story becomes different if the horizon entropy is of generalized entropic form, in which case, the effective energy density coming from the horizon entropy plays a significant role during the evolution of the universe. In particular, it turns out that in the context of generalized entropic cosmology, the ϕ2 potential indeed leads to a viable inflation (according to the Planck data) with a graceful exit, and thus the potential can be made back in the scene.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3