Simulation of the Isotropic Ultra-High Energy Photon Flux in the Solar Magnetic Field

Author:

Poncyljusz BożenaORCID,Bulik TomaszORCID,Dhital NirajORCID,Sushchov OleksandrORCID,Stuglik SławomirORCID,Homola PiotrORCID,Alvarez-Castillo DavidORCID,Piekarczyk MarcinORCID,Wibig TadeuszORCID,Stasielak JaroslawORCID,Kovács PéterORCID,Smelcerz KatarzynaORCID,Rodriguez Frias Maria DoloresORCID,Niedźwiecki MichałORCID,Miszczyk JustynaORCID,Sośnicki TomaszORCID,Bibrzycki ŁukaszORCID,Tursunov ArmanORCID,Del Peral LuisORCID,Rzecki KrzysztofORCID

Abstract

Both the lack of observation of ultra-high energy (UHE) photons and the limitations of the state-of-the-art methodology being applied for their identification motivate studies on alternative approaches to the relevant simulations and the related observational strategies. One such new approach is proposed in this report and it concerns new observables allowing indirect identification of UHE photons through cosmic ray phenomena composed of many spatially correlated extensive air showers or primary cosmic rays observed at one time. The study is based on simulations of interactions of UHE photons with the magnetic field of the Sun using the PRESHOWER program with some essential modifications. One of the expected results of such interactions is a generation of cosmic ray ensembles (CREs) in the form of very thin and very elongated cascades of secondary photons of energies spanning the whole cosmic ray energy spectrum. Upon entering the Earth’s atmosphere, these cascades or their parts may generate uniquely characteristic walls of spatially correlated extensive air showers, and the effect is expected also in cases when primary UHE photons are not directed towards the Earth. Particle distributions in these multi-primary UHE photon footprints are expected to have thicknesses of the order of meters and elongations reaching even hundreds of millions of kilometers, making them potentially observable with a global, multi-experiment approach, including re-exploring of the historical data, with the expected event rate exceeding the capabilities of even very large cosmic ray observatories. In this report, we introduce for the first time the methods allowing for simulating the isotropic flux of UHE photons in the Sun’s vicinity. Presented methods were verified and optimised in such a way that they would successfully model the cumulative spatial distribution of secondary photons at the top of the atmosphere. The preliminary results of simulations for the UHE photon flux of energy 100 EeV demonstrate the possibility of simulating potentially observable quantities related to CRE induced by UHE photons: densities, energy spectra and geographical orientations of secondary particles at the top of the Earth’s atmosphere. A measurement of at least one of these quantities would be equivalent to a confirmation of the existence of UHE photons, which would give an insight into fundamental physics processes at unprecedentedly high energies, far beyond the reach of man-made accelerators. On the other hand, a lack of such an observation would allow for further constraining of these fundamental processes with the physically new upper limits on UHE photon fluxes after careful analysis of the technical observation ability. The novel advantage of such an approach would lay in the purely electrodynamical character of the underlying simulations which are fully independent on extrapolations of hadronic interaction models by many orders of magnitude. Such extrapolations are necessary in the UHE photon identification methods based on the analyses of properties of individual extensive air showers presently used to determine the UHE photon upper limits.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference21 articles.

1. Cosmic-Ray Extremely Distributed Observatory

2. End to the Cosmic-Ray Spectrum?

3. Upper limit of the spectrum of cosmic rays;Zatsepin;JETP Lett.,1966

4. Review of Particle Physics

5. Ultrahigh-energy cosmic rays: A window on postinflationary reheating epoch of the Universe?;Kuzmin;Phys. At. Nucl.,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3