Low-Frequency Terahertz Photonic Crystal Waveguide with a Lilac-Shaped Defect Based on Stereolithography 3D Printing

Author:

Shi JiaORCID,Ding Yiyun,Tang LonghuangORCID,Li Xiuyan,Bai Hua,Li Xianguo,Fan Wei,Niu Pingjuan,Fu Weiling,Yang XiangORCID,Yao Jianquan

Abstract

Terahertz (THz) photonic crystal (PC) waveguides show promise as an efficient and versatile waveguiding platform for communication, sensing, and imaging. However, low-frequency THz PC waveguides with a low-cost and easy fabrication remain challenging. To address this issue, a THz PC waveguide with a lilac-shaped defect has been designed and fabricated by 3D printing based on stereolithography (SLA). The reflection and transmission characteristics of the proposed waveguide have been analyzed using the finite difference frequency domain (FDFD) method. The waveguide spectral response is further optimized by changing the distance of the lilac-shaped resonant cavities. Consistent with the results of numerical modeling, the measured results show that the waveguide performs a resonant reflection in the region of 0.2 to 0.3 THz and low-pass transmission in the 6G mobile communication window. Furthermore, in order to characterize the performance of the proposed waveguide, parameters have been analyzed, including the Q factor, resonant frequency, and bandwidth. This work supplies a novel pathway for the design and fabrication of a low-frequency THz PC waveguide with potential applications in communication, sensing, and imaging.

Funder

the Natural Science Foundation of Tianjin City

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3