Cumulative Histograms under Uncertainty: An Application to Dose–Volume Histograms in Radiotherapy Treatment Planning

Author:

Gesualdi Flavia1234ORCID,Wahl Niklas15ORCID

Affiliation:

1. German Cancer Research Center—DKFZ, 69120 Heidelberg, Germany

2. Institute for Astroparticle Physics (IAP), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

3. Instituto de Tecnologías en Detección y Astropartículas (Comisión Nacional de Energía Atómica, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín), Centro Atómico Constituyentes, San Martín B1650KNA, Argentina

4. Radiation Oncology Department, Institut Curie, PSL Research University, 91898 Orsay, France

5. Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), 69120 Heidelberg, Germany

Abstract

In radiotherapy treatment planning, the absorbed doses are subject to executional and preparational errors, which propagate to plan quality metrics. Accurately quantifying these uncertainties is imperative for improved treatment outcomes. One approach, analytical probabilistic modeling (APM), presents a highly computationally efficient method. This study evaluates the empirical distribution of dose–volume histogram points (a typical plan metric) derived from Monte Carlo sampling to quantify the accuracy of modeling uncertainties under different distribution assumptions, including Gaussian, log-normal, four-parameter beta, gamma, and Gumbel distributions. Since APM necessitates the bivariate cumulative distribution functions, this investigation also delves into approximations using a Gaussian or an Ali–Mikhail–Haq Copula. The evaluations are performed in a one-dimensional simulated geometry and on patient data for a lung case. Our findings suggest that employing a beta distribution offers improved modeling accuracy compared to a normal distribution. Moreover, the multivariate Gaussian model outperforms the Copula models in patient data. This investigation highlights the significance of appropriate statistical distribution selection in advancing the accuracy of uncertainty modeling in radiotherapy treatment planning, extending an understanding of the analytical probabilistic modeling capacities in this crucial medical domain.

Funder

Helmholtz Information & Data Science Academy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3