Development of Highly Sensitive and Thermostable Microelectromechanical System Pressure Sensor Based on Array-Type Aluminum–Silicon Hybrid Structures

Author:

Li Min12,Xiao Yang1,Zhang Jiahong12ORCID,Liu Qingquan12,Jiang Xianglong12,Hua Wenhao12

Affiliation:

1. School of Integrated Circuits, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

In order to meet the better performance requirements of pressure detection, a microelectromechanical system (MEMS) piezoresistive pressure sensor utilizing an array-type aluminum–silicon hybrid structure with high sensitivity and low temperature drift is designed, fabricated, and characterized. Each element of the 3 × 3 sensor array has one stress-sensitive aluminum–silicon hybrid structure on the strain membrane for measuring pressure and another temperature-dependent structure outside the strain membrane for measuring temperature and temperature drift compensation. Finite-element numerical simulation has been adopted to verify that the array-type pressure sensor has an enhanced piezoresistive effect and high sensitivity, and then this sensor is fabricated based on the standard MEMS process. In order to further reduce the temperature drift, a thermodynamic control system whose heating feedback temperature is measured by the temperature-dependent structure is adopted to keep the working temperature of the sensor constant by using the PID algorithm. The experiment test results show that the average sensitivity of the proposed sensor after temperature compensation reaches 0.25 mV/ (V kPa) in the range of 0–370 kPa, the average nonlinear error is about 1.7%, and the thermal sensitivity drift coefficient (TCS) is reduced to 0.0152%FS/°C when the ambient temperature ranges from −20 °C to 50 °C. The research results may provide a useful reference for the development of a high-performance MEMS array-type pressure sensor.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3