Abstract
The aim of this study is to extend the directive function of fault inference in test and diagnosis system for electronic equipment. There are many problems, such as presence of various types of uncertain information in test set of electronic equipment, frequent degenerative faults, complex relationships of modules, multiple fault modes, existence of fuzzy interval in fault state, and interaction of each module. In view of these problems, the total membership degree of faults is commonly synthesized based on weights of multiple test indicators and normal membership degree of a single indicator. On this basis, this study builds the model for inferring fault states of leaf and root nodes based on multi-state triangular fuzzy Bayesian network (BN). Finally, this research carried out feasibility analysis on fault inference of a super-heterodyne receiver, thus verifying the efficiency and applicability of the method proposed in the study.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献