Differentiation of Baboon (Papio anubis) Induced-Pluripotent Stem Cells into Enucleated Red Blood Cells

Author:

Olivier Emmanuel N.ORCID,Wang Kai,Grossman Joshua,Mahmud Nadim,Bouhassira Eric E.ORCID

Abstract

As cell culture methods and stem cell biology have progressed, the in vitro production of cultured RBCs (cRBCs) has emerged as a viable option to produce cells for transfusion or to carry therapeutic cargoes. RBCs produced in culture can be quality-tested either by xeno-transfusion of human cells into immuno-deficient animals, or by transfusion of autologous cells in immuno-competent models. Although murine xeno-transfusion methods have improved, they must be complemented by studies in immuno-competent models. Non-human primates (NHPs) are important pre-clinical, large animal models due to their high biological and developmental similarities with humans, including their comparable hematopoietic and immune systems. Among NHPs, baboons are particularly attractive to validate cRBCs because of the wealth of data available on the characteristics of RBCs in this species that have been generated by past blood transfusion studies. We report here that we have developed a method to produce enucleated cRBCs by differentiation of baboon induced pluripotent stem cells (iPSCs). This method will enable the use of baboons to evaluate therapeutic cRBCs and generate essential pre-clinical data in an immuno-competent, large animal model. Production of the enucleated baboon cRBCs was achieved by adapting the PSC-RED protocol that we previously developed for human cells. Baboon-PSC-RED is an efficient chemically-defined method to differentiate iPSCs into cRBCs that are about 40% to 50% enucleated. PSC-RED is relatively low cost because it requires no albumin and only small amounts of recombinant transferrin.

Publisher

MDPI AG

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3