Abstract
The application of a hydrocyclone to recycle NGH and desand during NGH exploitation is a novel idea. The flow field and performance of this hydrocyclone is in the frontier of the research in this field and is unclear so far. This research aimed to reveal the flow field characteristics and performance of NGH downhole hydrocyclones. In this paper, flow field, solid phase particle volume distribution and separation efficiency were investigated according to the two objectives of NGH recovery efficiency and sand removal efficiency with different inlet velocities by computational fluid simulations (CFD)-FLUENT software. The results show that the short circuit flow contributed to the recovery of NGH. Axial velocity is a decisive factor in balancing the two objectives of NGH recovery efficiency and sand removal efficiency. In addition, the same as those in traditional hydrocyclones, the static pressure, tangential velocity and turbulence intensity play key roles in separation performance, hydrocyclone performance can be improved by increasing the inlet velocity. On the other hand, most separation efficiencies were greater than 80%, when the particle size was larger than 15 µm, and the differential pressure was less than 0.6 MPa. Therefore, all the above results confirm that hydrocyclone has good performance in NGH exploitation, and the basis of its structural design and optimization are provided.
Funder
Strategic Consultation Project of the Chinese Academy of Engineering
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献