Tellurium Doping Inducing Defect Passivation for Highly Effective Antimony Selenide Thin Film Solar Cell

Author:

Chen Guojie1,Li Xiangye1,Abbas Muhammad1ORCID,Fu Chen1,Su Zhenghua1,Tang Rong2,Chen Shuo1ORCID,Fan Ping1,Liang Guangxing1ORCID

Affiliation:

1. Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

2. School of New Energy and Energy Conservation and Environmental Protection Engineering, Foshan Polytechnic, Foshan 528137, China

Abstract

Antimony selenide (Sb2Se3) is emerging as a promising photovoltaic material owing to its excellent photoelectric property. However, the low carrier transport efficiency, and detrimental surface oxidation of the Sb2Se3 thin film greatly influenced the further improvement of the device efficiency. In this study, the introduction of tellurium (Te) can induce the benign growth orientation and the desirable Sb/Se atomic ratio in the Te-Sb2Se3 thin film. Under various characterizations, it found that the Te-doping tended to form Sb2Te3-doped Sb2Se3, instead of alloy-type Sb2(Se,Te)3. After Te doping, the mitigation of surface oxidation has been confirmed by the Raman spectra. High-quality Te-Sb2Se3 thin films with preferred [hk1] orientation, large grain size, and low defect density can be successfully prepared. Consequently, a 7.61% efficiency Sb2Se3 solar cell has been achieved with a VOC of 474 mV, a JSC of 25.88 mA/cm2, and an FF of 64.09%. This work can provide an effective strategy for optimizing the physical properties of the Sb2Se3 absorber, and therefore the further efficiency improvement of the Sb2Se3 solar cells.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Science and Technology plan project of Shenzhen

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3