Affiliation:
1. School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
2. Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
3. Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
Abstract
The purpose of this study is to obtain a bio-based coating with good functional activity and self-healing ability, demonstrating its potential in food, materials, and other application fields. Plastic coatings can cause serious environmental pollution. It was a good solution to replace plastic coatings with degradable coatings. However, the development of degradable coatings in the fields of food and materials was limited due to their insufficient antibacterial ability and weak comprehensive properties. Therefore, chitosan nanoparticles (NPs) loaded with gallic acid (GA) were self-assembled with gelatin (GE) to prepare high-performance, degradable, self-healing bio-based nanocomposite coatings with antibacterial and antioxidant properties. The oxygen permeability of GE nanocomposite coatings decreased gradually with the addition of NPs, and the barrier properties increased significantly. At the same time, due to the excellent antioxidant and antibacterial ability of GA, the antioxidant effect of the nanocomposite coatings increased by 119%, and the antibacterial rate against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) increased by 32% and 58%, respectively, compared with the pure GE coatings. In addition, the nanocomposite coatings can be repaired within 24 h after being scratched at room temperature. Finally, GA coated with chitosan nanoparticles can significantly delay the escape of GA, and the retardation of gallic acid release exceeded 89% in simulated solutions after 24 h immersion, extending the service life of the nanocomposite coatings.
Funder
The Jiangsu Agricultural Science and Technology Innovation Fund
The Basic Scientific Research Project of Jiangsu Academy of Agricultural Sciences
Subject
General Materials Science,General Chemical Engineering