Development of Alkylthiazole-Based Novel Thermoelectric Conjugated Polymers for Facile Organic Doping

Author:

Kim Junho1,Suh Eui Hyun1,Lee Kyumin1,Kim Gyuri2,Kim Hansu1,Jang Jaeyoung1ORCID,Jung In Hwan2ORCID

Affiliation:

1. Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea

2. Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

Abstract

In this study, we developed two novel conjugated polymers that can easily be doped with F4TCNQ organic dopants using a sequential doping method and then studied their organic thermoelectric (OTE) properties. In particular, to promote the intermolecular ordering of OTE polymers in the presence of the F4TCNQ dopant, alkylthiazole-based conjugated building blocks with highly planar backbone structures were synthesized and copolymerized. All polymers showed strong molecular ordering and edge-on orientation in the film state, even in the presence of the F4TCNQ organic dopant. Thus, the sequential doping process barely changed the molecular ordering of the polymer films while making efficient molecular doping. In addition, the doping efficiency was improved in the more π-extended polymer backbones with thienothiophene units due to the emptier space in the polymer lamellar structure to locate ionized F4TCNQ. Moreover, the study of organic thin-film transistors (OTFTs) revealed that higher hole mobility in OTFTs was the key to increasing the electrical conductivity of OTE devices fabricated using the sequential doping method.

Funder

National Research Foundation (NRF) of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3