Abstract
Many technological solutions contain valuable components as waste and can become an additional source of rare-earth elements to meet the needs of modern production. The development of technologies based on commercially available and cheap sorbents reveals the possibility for rare earth recovery from various solutions. This paper provides research on using a combination of KU-2-8 and AV-17-8 ion exchangers in different molar ratios for cerium ions sorption from its nitrate solution. The mutual activation of the ion exchangers in an aqueous medium provides their transformation into a highly ionized state by the conformational and electrochemical changes in properties during their remote interaction. The ion exchange dynamics of solutions were studied by the methods of electrical conductivity, pH measurements, and atomic emission analysis of the solutions. The research showed that the maximum activation of polymers was revealed within the molar ratio of KU-2-8:AV-17-8 equal to 3:3. In more detail, in comparison to AV-17-8, this interpolymer system showed an increase in the sorption degree by more than 1.5 times after 6 h of interaction. Moreover, compared with KU-2-8, the same interpolymer system showed an increase in the degree of cerium ions sorption by seven times after 24 h of interaction. As a result, the total cerium ions sorption degree after 48 h of sorption by individual KU-2-8 and AV-17-8 was 38% and 44%, respectively, whereas the cerium ions sorption degree by the same interpolymer system in the molar ratio 3:3 became 51%. An increase in the sorption degree of cerium ions by the interpolymer system in comparison with individual ion exchangers can be explained by the achievement of a high ionization degree of ion exchangers being activated in the interpolymer system by the remote interaction effect.
Funder
Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan
Subject
General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献