Adding to Fire Fighter Safety by Including Real-Time Radar Data in Short-Range Forecasts of Thunderstorm-Induced Wind Shifts

Author:

Achtemeier Gary L.,Goodrick Scott L.ORCID

Abstract

Abrupt changes in wind direction and speed caused by thunderstorm-generated gust fronts can, within a few seconds, transform slow-spreading low-intensity flanking fires into high-intensity head fires. Flame heights and spread rates can more than double. Fire mitigation strategies are challenged and the safety of fire crews is put at risk. We propose a class of numerical weather prediction models that incorporate real-time radar data and which can provide fire response units with images of accurate very short-range forecasts of gust front locations and intensities. Real-time weather radar data are coupled with a wind model that simulates density currents over complex terrain. Then two convective systems from formation and merger to gust front arrival at the location of a wildfire at Yarnell, Arizona, in 2013 are simulated. We present images of maps showing the progress of the gust fronts toward the fire. Such images can be transmitted to fire crews to assist decision-making. We conclude, therefore, that very short-range gust front prediction models that incorporate real-time radar data show promise as a means of predicting the critical weather information on gust front propagation for fire operations, and that such tools warrant further study.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Reference11 articles.

1. Downdraft outflows: climatological potential to influence fire behaviour

2. A Report to the Committee on Appropriations US House of Representatives on Wildfire on Merritt Island https://www.wildfirelessons.net/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=de70dc82-1760-487f-b1d4-05a8d11293cc&forceDialog=0

3. The Role of Convective Outflow in the Waldo Canyon Fire

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3