Non-Parametric Statistical Analysis of Current Waveforms through Power System Sensors

Author:

Wilson Aaron J.,Warmack Bruce R. J.ORCID,Ekti Ali Riza,Liu Yilu

Abstract

The protection, control, and monitoring of the power grid is not possible without accurate measurement devices. As the percentage of renewable energy sources penetrating the existing grid infrastructure increases, so do uncertainties surrounding their effects on the everyday operation of the power system. Many of these devices are sources of high-frequency transients. These transients may be useful for identifying certain events or behaviors otherwise not seen in traditional analysis techniques. Therefore, the ability of sensors to accurately capture these phenomena is paramount. In this work, two commercial-grade power system distribution sensors are investigated in terms of their ability to replicate high-frequency phenomena by studying their responses to three events: a current inrush, a microgrid “close-in”, and a fault on the terminals of a wind turbine. Kernel density estimation is used to derive the non-parametric probability density functions of these error distributions and their adequateness is quantified utilizing the commonly used root mean square error (RMSE) metric. It is demonstrated that both sensors exhibit characteristics in the high harmonic range that go against the assumption that measurement error is normally distributed.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. (2022, July 01). Odessa Disturbance Texas Events: May 9, 2021 and June 26, 2021. North American Electric Reliability Council. Available online: https://www.nerc.com/pa/rrm/ea/Documents/Odessa_Disturbance_Report.pdf.

2. Statistical Characterization of PMU Error for Robust WAMS Based Analytics;IEEE Trans. Power Syst.,2020

3. Assessing Gaussian Assumption of PMU Measurement Error Using Field Data;IEEE Trans. Power Deliv.,2018

4. Impact of the Measurement Errors on Synchrophasor-Based WAMS Applications;IEEE Access,2019

5. Adaptive State Estimation for Power Systems Measured by PMUs with Unknown and Time-Varying Error Statistics;IEEE Trans. Power Syst.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3