CFD-Based Prediction of Combustion Dynamics and Nonlinear Flame Transfer Functions for a Swirl-Stabilized High-Pressure Combustor

Author:

Kapucu Mehmet1,Kok Jim B. W.1ORCID

Affiliation:

1. Faculty of Engineering Technology, University of Twente, 7522 NB Enschede, The Netherlands

Abstract

Thermoacoustic instabilities in gasturbine combustor systems can be predicted in the design phase with a thermoacoustic network model. In this model, the coupling between acoustic pressure fluctuations and the combustion rate is described by the Flame Transfer Function. The present paper introduces a new, efficient, and robust method for deriving the FTF from CFD predictions by means of a discrete multi-frequency sinusoidal fuel flow excitation method. The CFD-based FTF result compares well with experimental data for the time delay, but for the gain, only up to 400 Hz. Above 400 Hz, the CFD result reveals a smooth low-amplitude gain, which is not found in the measured data. A novel, accurate continuous correlation function for the FTF gain is computed based on the results for discrete frequencies. When this is implemented into a 1D acoustic network model, the stability map shows, below 600 Hz, two eigenfrequencies, by both the experiment and CFD-based FTF, that are identical. The CFD-based FTF correctly predicts marginal activity at the highest eigenfrequency, while the experimentally based FTF suggests an unstable operation. The unstable operation is not observed in the experiments. This suggests that the CFD-based FTF is also correct for high frequencies.

Funder

EC in the Marie Curie Actions-Networks for Initial training

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference52 articles.

1. Rayleigh, L. (1896). The Theory of Sound, Macmillan and Co.

2. Combustion dynamics and control: Progress and challenges;Candel;Proc. Combust. Inst.,2002

3. Measurement of transfer matrices and source terms of premixed flames;Paschereit;J. Eng. Gas Turbines Power,2002

4. Transfer function measurements in a model combustor: Application to adaptive instability control;Bernier;Combust. Sci. Technol.,2003

5. Combustion dynamics of turbulent swirling flames;Combust. Flame,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3