Evolution of CCUS Technologies Using LDA Topic Model and Derwent Patent Data

Author:

Huang Liangchao123ORCID,Hou Zhengmeng23ORCID,Fang Yanli234ORCID,Liu Jianhua1,Shi Tianle1

Affiliation:

1. Sino-German Research Institute of Carbon Neutralization and Green Development, Zhengzhou University, Zhengzhou 450001, China

2. Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Clausthal Zellerfeld, Germany

3. Research Centre of Energy Storage Technologies, Clausthal University of Technology, 38640 Goslar, Germany

4. Sino-German Energy Research Center, Sichuan University, Chengdu 610065, China

Abstract

Carbon capture, utilization, and storage (CCUS) technology is considered an effective way to reduce greenhouse gases, such as carbon dioxide (CO2), which is significant for achieving carbon neutrality. Based on Derwent patent data, this paper explored the technology topics in CCUS patents by using the latent Dirichlet allocation (LDA) topic model to analyze technology’s hot topics and content evolution. Furthermore, the logistic model was used to fit the patent volume of the key CCUS technologies and predict the maturity and development trends of the key CCUS technologies to provide a reference for the future development of CCUS technology. We found that CCUS technology patents are gradually transforming to the application level, with increases in emerging fields, such as computer science. The main R&D institutes in the United States, Europe, Japan, Korea, and other countries are enterprises, while in China they are universities and research institutes. Hydride production, biological carbon sequestration, dynamic monitoring, geological utilization, geological storage, and CO2 mineralization are the six key technologies of CCUS. In addition, technologies such as hydride production, biological carbon sequestration, and dynamic monitoring have good development prospects, such as CCUS being coupled with hydrogen production to regenerate synthetic methane and CCUS being coupled with biomass to build a dynamic monitoring and safety system.

Funder

The Henan Institute for Chinese Development Strategy of Engineering & Technology

the Science & Technology Department of Sichuan Province Project

the Soft Science Major Project of Henan Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3