Improved Brain-Storm Optimizer for Disassembly Line Balancing Problems Considering Hazardous Components and Task Switching Time

Author:

Zhao Ziyan1ORCID,Xiao Pengkai2,Wang Jiacun3ORCID,Liu Shixin1,Guo Xiwang2,Qin Shujin4ORCID,Tang Ying5

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

2. Information and Control Engineering College, Liaoning Petrochemical University, Fushun 113001, China

3. Department of Computer Science and Software Engineering, Monmouth University, West Long Branch, NJ 07764, USA

4. College of Economics and Management, Shangqiu Normal University, Shangqiu 476000, China

5. Electrical & Computer Engineering Department, Rowan University, Glassboro, NJ 08028, USA

Abstract

Disassembling discarded electrical products plays a crucial role in product recycling, contributing to resource conservation and environmental protection. While disassembly lines are progressively transitioning to automation, manual or human–robot collaborative approaches still involve numerous workers dealing with hazardous disassembly tasks. In such scenarios, achieving a balance between low risk and high revenue becomes pivotal in decision making for disassembly line balancing, determining the optimal assignment of tasks to workstations. This paper tackles a new disassembly line balancing problem under the limitations of quantified penalties for hazardous component disassembly and the switching time between adjacent tasks. The objective function is to maximize the overall profit, which is equal to the disassembly revenue minus the total cost. A mixed-integer linear program is formulated to precisely describe and optimally solve the problem. Recognizing its NP-hard nature, a metaheuristic algorithm, inspired by human idea generation and population evolution processes, is devised to achieve near-optimal solutions. The exceptional performance of the proposed algorithm on practical test cases is demonstrated through a comprehensive comparison involving its solutions, exact solutions obtained using CPLEX to solve the proposed mixed-integer linear program, and those of competitive peer algorithms. It significantly outperforms its competitors and thus implies its great potential to be used in practice. As computing power increases, the effectiveness of the proposed methods is expected to increase further.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3