Effects of Bt-Cry1Ah1 Transgenic Poplar on Target and Non-Target Pests and Their Parasitic Natural Enemy in Field and Laboratory Trials

Author:

Wang Pu,Wei Hui,Sun Weibo,Li Lingling,Zhou Peijun,Li DaweiORCID,Qiang ZhugeORCID

Abstract

Increasing areas of artificial afforestation and poplar monoculture in China have led to serious problems with insect pests. The development of genetic engineering technology, such as transgenic modification with Bacillus thuringiensis (Bt) genes, provides novel solutions to the pest problem. We generated a Bt-Cry1Ah1 gene incorporating codon optimization and transferred it into Populus deltoides × P. euramericana cv “Nanlin895” using an Agrobacterium-mediated method. The resulting Bt-Cry1Ah1 transgenic poplars were planted in the field with permission from the State Forestry Administration in 2017. Field and laboratory studies were conducted in Jiangsu, China, to investigate the effects of these transgenic poplars expressing the Cry1Ah1 protein on target and non-target pests and their parasitic natural enemy. Target pests included Hyphantria cunea (Lepidoptera, Arctiidae), Micromelalopha troglodyta (Lepidoptera, Notodontidae), and Clostera anachoreta (Lepidoptera, Notodontidae). Plagiodera versicolora (Coleoptera, Chrysomelidae) served as the non-target pest. Laboratory trials showed that the six transgenic poplar lines exhibited resistance against the target insects. The corrected mortality rates of the target pest larvae fed leaves from the six lines were as high as 87.0%, significantly higher than that of the control. However, the corrected mortality rate of the non-target pest larvae was markedly lower and did not differ significantly from that of the control. Field experiments showed that transgenic poplar exhibited resistance against H. cunea and M. troglodyta. Field mortality rates were slightly higher than laboratory mortality rates. In addition, we investigated Chouioia cunea (Hymenoptera, Eulophidae) as a parasitoid of H. cunea pupae that had been fed transgenic poplar leaves. The emergence time, parasitism rate, and abundance of C. cunea did not differ significantly from those of the control. Therefore, Bt-Cry1Ah1 transgenic poplar can be used to effectively control damage by target insect pests without negatively affecting non-target insects and parasitoids.

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3