Research on Uniaxial Compression Mechanics of Diorite under Flowing Acidic Solution Scouring

Author:

Chen WeiORCID,Wu Li,Zeng Zhi,Wan Wen,Liu Jie,Wu Xiaofan,Peng Wenqing,Zeng Xiantao,Ren Zhenhua,Xie Senlin,Zhou Yu

Abstract

The bedrock used for underground construction has obvious traces of hydrodynamic scouring damage, and the mechanical properties of bedrock especially are severely damaged under a groundwater environment. On this basis, considering the excavated bedrock under various saturations, the uniaxial compression test of diorite is carried out. Meanwhile, scanning electron microscopy (SEM), electron energy spectroscopy (EDS) and X-ray diffraction (XRD) are used in the experiment. The variation law of the elastic p-wave velocity and microstructure and the response characteristics of the strength, deformation and mechanical parameters of rock under different flow rates and pH values are analyzed in detail. The results indicate that: (1) Saturations with a faster flow rate and lower pH value cause greater relative changes in the elastic longitudinal wave velocity of the samples. (2) The uniaxial compressive strength of the samples under various treatment conditions showed a decreasing trend. Compared with the dried samples, the uniaxial compressive strength of the samples under saturation with field flow rate v = 300 mm·s−1 and pH = 1 decreased by 46.08%, and the strength decreased by 35.67% under saturation with a field pH value = 6.56 and flow rate v = 900 mm·s−1. (3) The saturation with a stronger acidity, greater flow rate and longer action time causes the apparent dense structure of the diorite sample to be loose and accompanied by microcracks, which weakens its macromechanical properties. (4) Acid and hydrodynamic saturation produce water–rock chemical and physical effects on diorite, which weaken the connection force between mineral particles and the friction between fracture surfaces, reduce the elastic modulus, increase Poisson’s ratio and accelerate the failure of diorite.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3