Molecular Mechanisms of the Cyanobacterial Response to Different Phosphorus Sources

Author:

Zhang Qi12,Jia Lu3,Chen Yuchen2,Yan Hanlu2,Chen Qiuwen245ORCID,Zhang Jianmin1,Sun Hao2

Affiliation:

1. College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China

2. Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China

3. Huai’an City Water Conservancy Engineering Construction Management Service Center, Huai’an 223021, China

4. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

5. Yangtze Institute for Conservation and Green Development, Nanjing 210029, China

Abstract

There are different phosphorus (P) sources of varied concentrations in aquatic ecosystems. The sensing of P by cyanobacteria in the environment is predominantly regulated by two-component signal transduction systems in which the phosphate (Pho) regulon plays a crucial role in maintaining phosphate homeostasis. It responds rapidly and connects to metabolic processes through cross-talk mechanisms. However, the physiological and biochemical mechanisms of the cyanobacterial response to different P sources remain unclear. This review article aims to integrate the physiological and molecular information on the regulatory mechanisms of the cyanobacterial response to different P sources in terms of hydrolysis, transport, and inorganic P (DIP) utilization strategies. Topics covered include enzymatic utilization of DOP (C-O-P, C-P), phosphate transport systems, and exploring the potential P metabolic pathways that might occur in cyanobacteria. This is of great significance for mitigating eutrophication and maintaining the sustainable development of aquatic systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3