Study on Impact Process of a Large LNG Tank Container for Trains

Author:

Wang Zhiqiang,Qian Caifu,Li Wei

Abstract

In this paper, the impact process of a large LNG tank container for trains was studied by performing experiments and numerical simulations. Impact force with induced stress and deformation on the container especially on the frame was investigated and LNG sloshing inside the container was simulated. Experimental results show that for the initial velocity of 6.1 km/h, the maximum compressive stress is −366.3 MPa occurring on the longitudinal beam near the impact side corner fittings. The impact force produced by the transport vehicle is influenced by both the initial clearance and initial velocity, i.e., its maximum value increases with the clearance or velocity, which in turn directly affects the LNG impact force on the head, the tank container axial acceleration at the mass center and the frame deformation and stress distribution. The largest average pressure brought on by the LNG impact force is 8.83% of the design pressure, the inner vessel should be designed with a thickness allowance. When the initial velocity is 8 km/h, the ratio of the maximum LNG impact force to the static inertia force at each clearance is less than 0.23, which means that the calculation method of LNG static inertia force is conservative. In addition, the maximum axial acceleration of the tank container can reach 63 m/s2, greater than 4g inertial acceleration specified in the container design standard, meaning if assessed by the impact, the specifications of the standard are not conservative.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3