3D Modeling of a Virtual Built Environment Using Digital Tools: Kilburun Fortress Case Study

Author:

Tytarenko Ihor1,Pavlenko Ivan2,Dreval Iryna1

Affiliation:

1. Department of Urban Planning, O.M. Beketov National University of Urban Economy in Kharkiv, 17 Marshal Bazhanov St., 61002 Kharkiv, Ukraine

2. Department of Computational Mechanics Named after Volodymyr Martsynkovskyy, Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine

Abstract

The reliable reconstruction of cultural or historical heritage objects is an urgent problem for humanity. It can be successfully solved using up-to-date 3D modeling tools. The proposed technique allows for modeling virtual environments at an even higher level. This study aimed to develop an approach for designing historical heritage objects with sufficient accuracy using a built environment. The Kilburun Fortress was chosen as the object of study. The modeling procedure includes monitoring the object’s territory, analyzing archival, librarian, and cartographic sources, and further modeling and reproducing the research object in a virtual environment using various software tools. The following stages were implemented during this study: analysis and processing of preliminary data (analysis of plans and schemes, overlapping maps); the scaling of graphical objects for the reliable reproduction of the studied object; the design of a working 3D model using AutoCAD and SketchUp; the rendering and final processing of textures using Quixel; and visualization using Twinmotion. As a result, a model of the historical heritage object was created using 3D means. The model can also be integrated into ArchiCAD and Revit software.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3