Comparing a Fuzzy Hybrid Approach with Invariant MGCFA to Study National Identity

Author:

Martín Juan Carlos1ORCID,Indelicato Alessandro12ORCID

Affiliation:

1. Institute of Tourism and Sustainable Economic Development, University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain

2. Department of Design and Planning in Complex Environmensts, IUAV University of Venice, I-30123 Venice, Italy

Abstract

National identity studies diverge on several issues, such as the number of factors and their respective items’ adscription. Multi-Group Confirmatory Factor Analysis (MGCFA) is the standard method applied to cross-national datasets. Differences between groups can be the result of measurement artefacts. We argue that these problems can be better addressed by an alternative approach that builds a synthetic indicator named Relative National Identity Synthetic Indicator (RNISI), based on a Fuzzy Hybrid Analysis (FHA). The study aims to shed some light on the study of the latent variable national identity by comparing two methodologies: the classic method most often used (MGCFA) and the Fuzzy-Hybrid Approach, which, to our knowledge, has not been previously applied. This empirical study was based on a dataset from across ten countries using two waves (2003 and 2013) of the International Social Survey Programme (ISSP). The FHA results were compared with those obtained by two MGCFA models in which national identity was built as a second-order construct that depends on the ethnic, ancestry and civic first-order latent variables. The comparison lets us conclude that FHA can be considered a valid tool to measure the national identity by groups, and to provide additional information in form of elasticity figures. These figures can be employed to analyse the indicator’s sensitivity by group and for each of the items included in the national identity construct.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3