Tool Failure Analysis and Multi-Objective Optimization of a Cutting-Type Energy-Absorbing Structure for Subway Vehicles

Author:

Gao Qianchen1,Xiao Shoune1,Wang Xiaorui1ORCID,Wang Mingmeng1,Zhu Tao1

Affiliation:

1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

Abstract

This paper aims to provide essential guidance for the crashworthiness design of cutting energy-absorbing structures for subway vehicles. By investigating tool failure with experiment and numerical approaches, a new energy-absorbing tube structure was proposed and optimized to improve the crashworthiness and reliability of the cutting energy-absorption structure. The impact test results revealed that multiple failure modes occurred in the tool. Mechanical wear occurs mainly in the middle of the cutting edge, while the tool’s tip failure is primarily due to thermal wear. Impact forces were no longer stable due to tool failure. The simulation results of the established tool-tube thermal–structural coupling finite element model were consistent with the tests. The temperature distribution indirectly validated the failure modes in different tool areas. By eliminating the tearing-type fracture mode, the proposed new structure effectively reduced the high temperature of the tool’s tip, better maintained the uniform temperature of the cutting edge, and smoothed changing of the cutting force. Finally, the Kriging surrogate model and NSGA-II algorithm were utilized to obtain the tool’s minimum steady-state temperature (STT) and maximum mean average cutting force (MCF). The optimal solution determined by the minimum distance method is STT = 514 K, MCF = 131 kN.

Funder

National Natural Science Foundation of China

Sichuan Outstanding Youth Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3