Significance of Fibrillin-1, Filamin A, MMP2 and SOX9 in Mitral Valve Pathology

Author:

Opris Carmen Elena12,Suciu Horatiu34,Jung Ioan24,Flamand Sanziana3,Harpa Marius Mihai3,Opris Cosmin Ioan3,Popa Cristian5,Kovacs Zsolt67,Gurzu Simona247ORCID

Affiliation:

1. Department of Adult and Children Cardiovascular Recovery, Emergency Institute for Cardio-Vascular Diseases and Transplantation, 540139 Targu Mures, Romania

2. Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540139 Targu Mures, Romania

3. Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540139 Targu Mures, Romania

4. Romanian Academy of Medical Sciences, 030173 Bucharest, Romania

5. Faculty of European Studies, Babes-Bolyai University, 400006 Cluj-Napoca, Romania

6. Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139 Targu Mures, Romania

7. Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540139 Targu Mures, Romania

Abstract

Genetic factors play a significant role in the pathogenesis of mitral valve diseases, including mitral valve prolapse (MVP) and mitral valve regurgitation. Genes like Fibrillin-1 (FBN1), Filamin A (FLNA), matrix metalloproteinase 2 (MMP2), and SRY-box transcription factor 9 (SOX9) are known to influence mitral valve pathology but knowledge of the exact mechanism is far from clear. Data regarding serum parameters, transesophageal echocardiography, and genetic and histopathologic parameters were investigated in 54 patients who underwent cardiovascular surgery for mitral valve regurgitation. The possible association between Fibrillin-1, Filamin A, MMP2, and SOX9 gene expressions was checked in relationship with the parameters of systemic inflammatory response. The mRNA expression levels (RQ—relative quantification) were categorized into three distinct groups: low (RQ < 1), medium/normal (RQ = 1–2), and high (RQ > 2). Severe fibrosis of the mitral valve was reflected by high expression of FBN1 and low expression of MMP2 (p < 0.05). The myxoid degeneration level was associated with the mRNA expression level for FBN1 and a low lymphocyte-monocyte ratio was associated with an increased mRNA expression of FBN1 (p < 0.05). A high number of monocytes was associated with high values of FBN1 whereas the increase in the number of lymphocytes was associated with high levels of MMP2. In addition, we observed that the risk of severe hyalinization was enhanced by a low mRNA expression of FLNA and/or SOX9. In conclusion, a lower FLNA mRNA expression can reflect the aging process that is highlighted in mitral valve pathology as a higher risk for hyalinization, especially in males, that might be prevented by upregulation of the SOX9 gene. FBN1 and MMP2 influence the inflammation-related fibrotic degeneration of the mitral valve. Understanding the genetic base of mitral valve pathology can provide insights into disease mechanisms, risk stratification, and potential therapeutic targets.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3