Abstract
Through a numerical analytical approach based on piezoelectric analysis and meta-modeling, this study investigated the effect of the component design of an accelerometer sensor on sensitivity and resonance frequency. The results of the study confirmed that the resonance frequency obtained from the piezoelectric analysis was almost the same as the experimental value of the resonance frequency obtained from the fabricated sensing module and proved the validity of the piezoelectric analysis using a finite element method. Moreover, the results of examining the influence of the component design on the resonance frequency and electrical potential suggested that the diameter and height of the head (seismic mass) had the greatest influence. As the diameter and height of the head increased, the sensitivity increased, but the resonance frequency decreased, which indicates that it is necessary to select an appropriate mass to optimize the sensor performance. In addition, the increase in tail height and epoxy thickness had a positive effect on both the resonance frequency and electric potential, and the base diameter had a negative effect on both of them.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献