Evaluation of a Three-Parameter Gearshift Strategy for a Two-Speed Transmission System in Electric Vehicles

Author:

Ahssan Md Ragib1ORCID,Ektesabi Mehran2,Gorji Saman3ORCID

Affiliation:

1. Department of Mechanical Engineering and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

2. School of Software and Electrical Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

3. School of Engineering, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia

Abstract

This paper proposes a three-parameter gearshift scheduling strategy that has been implemented on both large and small electric vehicles with two-speed transmission systems. The new strategy evaluates vehicle performance under varying driving conditions on flat and hilly roads by assessing the vehicle speed, acceleration, and road grade. A heuristic approach is used to develop two gearshift schedules for vehicle acceleration and road grade, and gradient descent and pattern search methods are applied to optimize the gear ratios and primary gearshift schedules. The results show that the proposed gearshift strategy saves 16.5% of energy on hilly roads compared to conventional approaches. Optimal gearshift schedules for acceleration provide more room for second gear operation, while optimized gearshift schedules for the road grade increase the buffer zone for larger vehicles and allow more space for the second gear operating area. The experimental results validate the proposed approach’s performance for both large and small electric vehicles.

Funder

The Australian Government Research Training Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3